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Abstract: Using fine-tuned hydrogen bonding criteria, a library of coiled peptide fragments has

been generated from a large set of high-resolution protein X-ray structures. This library is shown
to be an improved representation of //w torsion angles seen in intrinsically disordered proteins

(IDPs). The //w torsion angle distribution of the library, on average, provides good agreement with

experimentally observed chemical shifts and 3JHN-Ha coupling constants for a set of five disordered
proteins. Inspection of the coil library confirms that nearest-neighbor effects significantly impact

the //w distribution of residues in the coil state. Importantly, 3JHN-Ha coupling constants derived

from the nearest-neighbor modulated backbone / distribution in the coil library show improved
agreement to experimental values, thereby providing a better way to predict 3JHN-Ha coupling con-

stants for IDPs, and for identifying locations that deviate from fully random behavior.
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Introduction

The torsion angles / and w define the backbone con-

formation of a polypeptide chain and the //w distri-

bution of intrinsically disordered proteins (IDPs)

remains the focus of considerable interest. An accu-

rate, residue-specific representation of the random

coil Ramachandran map is important as it provides

an empirical calibration for the residue dependence

of the energies associated with each pair of //w
angles. Equally important, an accurate representa-

tion will facilitate identification of residues in a

dynamically disordered protein where the angular

distribution deviates from what is expected for a

fully disordered chain, i.e., to identify transient con-

formations that may be important for target bind-

ing.1–11 Of course, a key problem in such work is

finding an optimal “baseline” of coil behavior, and

much effort has been devoted to developing an opti-

mal //w distribution of such an ideal coil, which
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lacks any significant long range interactions other

than steric occlusion by the peptide chain itself, but

includes nearest neighbor effects.12–21 In principle,

analysis of long molecular dynamics trajectories of

intrinsically disordered systems could provide this

information.22 However, in practice, the //w distri-

butions generated in this manner are highly sensi-

tive to the water model used and to the

parameterization of the empirically developed force

fields,16,23,24 sometimes resulting in formation of sec-

ondary structure for sequences that are known from

experiment to be disordered. Although adjustment

terms can be introduced to prevent the formation of

such elements,25 in practice they do not yet yield the

exquisite balance that is needed to properly repre-

sent the Boltzmann distribution across the entire

Ramachandran space. Instead, coil distributions

therefore have mostly relied on a compilation of seg-

ments void of secondary structure that are taken

from crystallographically determined protein struc-

tures,13,26,27 where the lengths of such segments

that can be observed with good electron density are

often relatively short.

NMR spectroscopy is another widely used

method for characterizing dynamic systems, where

the observable parameters — chemical shifts and J

couplings, sometimes supplemented by residual

dipolar couplings9,24 — report on the time or ensem-

ble average of //w angles sampled by the polypep-

tide. However, the limited number of NMR

observables per residue is clearly insufficient to

uniquely define its entire Ramachandran map distri-

bution. An additional requirement, minimizing the

deviation from a database distribution, was there-

fore introduced by the MERA program to resolve

this under determined problem.21,28 More commonly,

chemical shifts and J couplings of short linear pepti-

des have been used to define a “baseline” for random

coil values of such parameters.29–33 However, it was

clear that effects of neighboring residues are not

negligible, and a calibration using the increasingly

growing library of values recorded for highly disor-

dered systems, which permits the effect of nearest

neighbors to be taken into account, provides a better

reference for values representative of complete disor-

der.13,14,34–36 In order to gain mechanistic insights

into the relation between nearest neighbors and //w
distributions, the distribution of a given amino acid

may be compared to that of the residue embedded in

a sequence of Gly residues.37,38 The impact of near-

est neighbors on 3JHN-Ha values, relative to Gly-

embedded residues, correlates reasonably well with

nearest neighbor effects measured in a series of

blocked dipeptides, with small systematic differences

attributed to the effect of the adjacent blocking

groups.39 However, when we applied such an analy-

sis to our experimental data recorded for a series of

disordered proteins, the RMSD relative to predicted

values remained rather high (0.46 Hz), comparable

to what was obtained with the neighbor corrections

proposed by Griffiths-Jones et al.15

Our current study aims to predict 3JHN-Ha val-

ues by analyzing the impact of residue type and that

of its neighbors on the //w distributions of coil

regions in the protein data bank while using a previ-

ously parameterized Karplus equation. Evaluation of

the effect of nearest neighbors on the Ramachan-

dran distribution follows the insightful analysis by

Ting et al.19 but uses different, H-bond based crite-

ria for identifying coil residues. The analysis relies

on the assumption that effects beyond those from its

nearest neighbors are averaged to zero when consid-

ering a sufficiently large set of database triplets of

any given residue composition. Our curated library

of coiled protein fragments is relatively large (>

20,000 fragments) and is generated strictly on the

basis of the absence of both intra- and intermolecu-

lar nonsequential H-bonding in the X-ray structure

coordinates, using a generous cut-off in a previously

developed potential of mean force for such interac-

tions. Although, by the very nature of the X-ray

structures from which they were derived, the seg-

ments are subject to large numbers of steric interac-

tions with other intra- or intermolecular residues,

we again assume that the effect of these nonspecific

interactions averages to zero when the library is suf-

ficiently large. This assumption is validated by the

observation that our library shows good consistency

with experimental chemical shifts and 3JHN-Ha val-

ues measured for a set of five highly disordered pro-

teins, thereby allowing generation of improved

“random coil” values for 3JHN-Ha. Because IDPs can

be sensitive to oligomer formation, care was taken to

ensure that the NMR spectra of these five proteins

were insensitive to sample concentration, thereby

ensuring that the experimental values correspond to

their monomeric states.

Methods

Generation of the coil library

Analysis of the //w angle distributions of residues in

coil regions of protein structures has been widely

used to probe the intrinsic, sequence-based preferen-

ces to populate any given region of Ramachandran

space. Such an analysis requires (1) determination

of the //w propensities of each residue type free

from stabilizing interactions associated with second-

ary structure, including b-strands and a-helices, or

other H-bond interactions to nonimmediate neigh-

boring residues and (2) examination of the effects of

immediately neighboring residues in modulating ste-

rically or otherwise the coil propensities.

In a previous study,28 we used the coil library of

Fitzkee et al.,18 which simply excluded residues in

regions of a-helical or b-sheet secondary structure
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based on a “mesostate” evaluation. However, this

type of coil library then includes a substantial frac-

tion of residues in the a-region of Ramachandran

space, resulting from H-bonded b-turns, and exclu-

sion of turn residues as well as residues immediately

adjacent to a-helix or b-sheet has been shown bene-

ficial for removing bias in a coil library.17 For the

subsequent development of the MERA program,21

which aims to generate a “maximum entropy” //w
distribution from NMR restraints, an updated “H-

bond free” coil library was generated. For this pur-

pose, a simple intramolecular H-bond energy cut-off

criterion of EHB<20.7 kcal/mol was used, where the

energy was calculated by the DSSP program.40

Here, we use a more elaborate H-bond potential

with stricter H-bond partner criteria for generating

the coil library. Specifically, inclusion in the new coil

library requires that a fragment (1) is at least 3 resi-

dues in length; (2) that there are no intra- or inter-

molecular H-bonds to the carbonyl immediately pre-

ceding a fragment or the N-H group immediately fol-

lowing the fragment; (3) that all its residues lack

both intra- and inter-molecular H-bonding including

partners belonging to the chains related by crystallo-

graphic symmetry. Here, the presence of a H-bond is

defined by a potential of mean force “HBDB” energy

cut-off of 2.4 kcal/mol above the minimum for

backbone-backbone H-bonds to any intra- or inter-

molecular residue.41 Residues involved in backbone-

sidechain H-bonds and an energy below 20.5 kcal/

mol as defined by the DSSP program40 are also

excluded. An exception to rule (3) is that we do allow

backbone-backbone (i–1 to i 1 1) and sidechain-

backbone H-bonding within a three-residue

fragment, as such (lowly populated) conformations

ostensibly could be part of their natural coil confor-

mational distribution.

As input for generating the coil library, we used

all PDB X-ray structures solved at a resolution� 2.0

Å, with an R factor lower than 23%, and a maximum

pairwise sequence identity of 90%. The new coil

library contains 20,136 fragments, yielding //w tor-

sion angles for 96,240 residues. The populations

observed in the five standard regions, comprising

polyproline-II (PPII), b, aR, type I b-turn (b-I) and

aL, are ca 25%, 25%, 10%, 5%, and 1%, respectively

[Fig. 1(A)]. The remaining, ca one third of residues

are simply grouped together as “other.” A compari-

son between the newly generated coil library and

the MERA library shows a small fractional decrease

of residues in the aR and b-I regions, but a similar

distribution in the b and PPII regions (Supporting

Information Fig. S1). An increased //w density is

also observed for several sparsely populated

regions, such as the region around 608/–908, which

contains ten 3-residue fragments with a backbone-

backbone H-bond between the first and last resi-

dues. The modest shift in our newly generated coil

library distribution relative to the previous H-bond

based MERA coil library (Supporting Information

Fig. S1) is not surprising, considering that the new

coil library eliminates more structured elements

such as H-bonded turns, identified with the more

sophisticated H-bond potential, whereas H-bonds

previously identified solely on the basis of donor-

acceptor distance now also include an angular

term that can remove them from being counted as

valid.

Figure 1. Backbone torsion angles distributions observed in our newly generated coil library, illustrated for (A) all residues, (B)

963 residues neighbored by two Gly (or subset {G-X-G}), (C) 11,938 residues followed by a Lys, Gln or Arg ({X-K|Q|R}), and (D)

7,122 residues next to a Phe, Trp or Tyr ({F|W|Y-X}). For each plot, three different u/w conformational regions are marked as

those with a normalized residue density d(/,w)/dmax above thresholds of 60%, 30%, and 3%, respectively, in the newly gener-

ated coil library or its subsets. Their boundaries are marked by dark solid, light solid and light dashed lines, respectively. The

residue density, d(/,w), is derived by convolution of each of the /k/wk coil library entries with a Gaussian function, exp(–((/ –

/k)
2 1 (w – wk)

2))/450).42 (A) Ramachandran density map of all residues in the coil library, d(/,w)/dmax; (B-D) for each of the three

subsets, the ratio of d(/,w)/Rd(/,w) between the subset and all other residues (center residue X 6¼Gly, Pro and Xaa-Pro) is

plotted from blue to red (B-D). To illustrate the impact of different nearest-neighbors on the / torsion angle distribution, the

normalized / torsion angle distribution is also plotted (red) at the bottom of each plot (B-D), together with the normalized /
angle distribution observed for all other residues in the coil library (black) and the scaled 3JHN-Ha Karplus equation curve

(green). Dashed boxes mark secondary structure regions: b (–1808</<–908, 908<w<1808), PPII (–908</<–458, 1058<w<1808),

aR (–908</<–458, 2608<w<2158), type I b-turn (b-I) (–1358</<–758, 2158<w<308), and aL (458</<758, 158<w<608) (see labels in A).
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Validation of the coil library by NMR

chemical shifts

If the backbone //w torsion angle distribution

observed in our newly derived coil library is repre-

sentative of a random coil, the NMR chemical shift

calculated for any given type of residue averaged

over the coil library should agree well with its

empirically calibrated random coil value. For this

purpose, we use the SPARTA1 program43 to predict

the chemical shifts for each coil residue in the con-

text of its original crystal structure. While the value

for each predicted chemical shift would deviate sub-

stantially from random coil, the agreement should

be much improved after averaging over the many

residues of any given type in the coil library, pro-

vided that our newly derived Ramachandran distri-

bution mimics the one sampled in solution by an

IDP. The impact of neighboring residues on the //w
torsion angle distribution sampled by a disordered

peptide, and thereby on its chemical shifts, has been

accounted for by neighbor correction factors.44 For

example, as discussed below, for a VAV tripeptide

the center Ala residue is expected to sample aR tor-

sion angles less frequently than what is expected for

Ala residues, resulting in negative correction param-

eters for its 13Ca chemical shift.44 For this reason, it

is preferred to consider the difference between the

SPARTA1 calculated values for each coil library res-

idue and its neighbor-corrected random coil value

when calculating the average difference for a given

type of residue. On the other hand, since these cor-

rection factors are small, and can have either a posi-

tive or negative sign, the impact on the average

difference tends to be even smaller, in particular

when the residue type composition of the neighbors

in the library is broadly distributed.

The average difference between SPARTA1 and

neighbor-corrected random coil values for 13Ca, 13C0,

and backbone 15N was calculated for each residue

type in the four different coil libraries considered in

our study (Supporting Information Table S1). With a

mean difference of 0.09 ppm (13Ca), 0.12 ppm (13C0),

and 0.49 ppm (15N) over the 20 residue types, these

agreements are somewhat better for our newly gen-

erated coil library than for earlier ones and indica-

tive of an absence of bias in population of helical

over sheet regions. In fact, the differences are

smaller than the RMSD between predicted coil val-

ues and experimentally measured random coil chem-

ical shifts in a-synuclein, which exhibits chemical

shifts closest to Poulsen random coil values of any

IDP for which extensive chemical shift values have

been reported.45

ANN analysis of nearest-neighbor effects
The nearest-neighbor effects on the //w distribution

of coil residues are first evaluated by using a single-

level, feed-forward, multi-layer artificial neural net-

work (ANN). This neural network has an architec-

ture very similar to that used by the program

SPARTA1.43 The input signals to the first layer con-

sist of the tripeptide sequences for all residues in

the coil library, with each residue coded by its amino

acid type similarity score taken from the 20 3 20

BLOSUM62 matrix.46 Therefore, each tripeptide

input is represented by 60 nodes. In the hidden

layer of the network, where each node receives the

weighted sum of the input layer nodes as a signal,

20 such nodes (or hidden neurons) are used. The

output of a hidden layer node is obtained through a

nodal transformation function.

For the purpose of evaluating the impact of

nearest neighbors on the //w distribution of coil resi-

dues, the //w space is grouped into six different

regions, comprising PPII, b, aR, b-I, and aL with the

remainder assigned to “other” [Fig. 1(A)]. For a

given input tripeptide, a Boolean number [1 or 0] is

used to indicate the region in which the center resi-

due resides; i.e., a six-dimensional Boolean vector is

used as the training target of the network. For

example, a vector of [0 1 0 0 0 0] is used as the

training target for a tripeptide with its center resi-

due in the b region.

Each output value has one node with a linear

activation function f2(x). The empirical relationship

between the //w torsion angle distribution of the

center residue and the tri-peptide sequence data,

received by the network, is given by

PANN
136 5f2ðf1ðX13603W

ð1Þ
603201b

ð1Þ
1320Þ3W

ð2Þ
20361b

ð2Þ
136Þ (1)

with f1(x) 5 (1 2 e22x)/(1 1 e22x), and f2(x) 5 x. X1360

is the input data vector consisting of 60 elements;

W(1) and b(1) are the weight matrix and bias, respec-

tively, for the connection between the nodes in the

input and the hidden layer; W(2) and b(2) are the

weight matrix and bias for the connection between

the nodes in the hidden and output layer; P136 is

the training target or output vector, consisting of the

normalized probabilities that its center residue is

located in any of the six regions.

The weight and bias terms were determined by

training the artificial neural network on our new

coil library. To prevent over training, a standard

three-fold jackknifing procedure was employed for

the neural network model by dividing the input–out-

put training dataset into three separate subsets,

followed by separate training of the corresponding

neural networks on two thirds of the data and evalu-

ation of the trained ANN performance on the

remaining one third. Training of the network was

terminated when its performance on the validation

dataset, represented by the mean squared errors

between the predicted and target values began to
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degrade. This procedure was repeated three times,

each time with a different one-third of the library

proteins assigned to the validation set.

The likelihood of a given tripeptide center residue

residing in each of the six //w regions, PANN
i [i 5 1 to 6],

is taken from the ANN-predicted values using the

weights and biases obtained from the above training

steps, averaged over the outputs from the three sepa-

rately trained networks. The 6-region PANN
i score is then

calculated for the center residue of all 8,000 possible tri-

peptides, with results available at https://spin.niddk.

nih.gov/bax/nmrserver/rc_3Jhnha/ann_results.txt

Training of the ANN also was repeated by using

the simple residue types, rather than their BLO-

SUM62 representation as input, with each input res-

idue type described by a 20-dimensional unit vector

containing a single one and 19 zeroes. Training of

this network yielded a matrix very similar to the

one derived from the BLOSUM62 representation,

but with slightly worse statistics in terms of valida-

tion parameters. Similarly, repeating the calcula-

tions with different matrix representations of the

amino acid similarities (RBLOSUM64, BLOSUM45,

and BLOSUM80) resulted in slightly (0.5–2%) lower

Q6 cross validation statistics.

Results and Discussion

Nearest-neighbor effects on the //w distribution
Although the above neural network training

approach yields an optimized predictor for the

placement of the center residue of any given tri-

peptide fragment into any of the six target regions,

it does not provide an intuitive picture of which fac-

tors dominate this distribution. Therefore, we here

also evaluate the impact of residue type for all three

positions in tri-peptides. Because statistically the aL

region is poorly sampled, and the region designated

as “other” consists of a wide range of very different,

sparsely sampled conformations, we only focus on

the standard regions: PPII, b, aR, and b-I.

As expected, the type of the center residue

strongly impacts its //w probability [Table I; Fig.

2(A); Supporting Information Fig. S2]. For example,

Ile and Val are nearly twice as likely to be located in

the b region than Asp or Asn, and much less likely

to be found in the aR region. Gly residues show

below average propensities for any of the four

selected regions [Fig. 2(A)], but this can be explained

by the fact that our partitioning of //w space is not

suitable for the nonchiral Gly residue, causing its

majority to fall outside of the b, PPII, aR and b-I

regions. Gln, Met, and Lys show closest to average

backbone angle distributions, as viewed by the pair-

wise Hellinger distance map [Fig. 2(D)]. The Hellin-

ger distance is a convenient parameter to represent

how similar two probability distributions are, and in

our case is used to compare two Ramachandran map

distributions.19,38 Two distributions that are identi-

cal have a Hellinger distance of zero, while two dis-

tributions without overlap have a distance of one. As

Table I. Center Residue and Nearest-Neighbor Effects on the Backbone Conformational Distribution

<dfXig/dfXg>a <dfZ2Xg/dfX2Xg>b <dfX2Zg/dfX2Xg>b

PPII b aR b-I PPII b aR b-I PPII b aR b-I

A 1.48 0.84 1.28 0.53 0.99 0.94 1.09 0.96 1.02 1.06 0.88 0.86
C 0.93 1.35 0.71 0.75 0.72 0.73 1.48 2.25 0.98 1.01 0.79 1.04
D 0.75 0.57 1.37 1.95 0.86 1.17 0.90 1.03 0.85 0.99 1.18 1.23
E 1.22 0.92 1.29 0.68 1.16 1.07 0.76 0.65 0.91 0.98 1.30 1.00
F 1.02 1.36 0.57 0.87 0.76 1.22 1.07 1.18 0.80 1.15 1.17 0.99
G 0.50 0.45 0.37 0.39 0.99 0.88 1.12 1.42 0.92 0.91 1.03 1.55
H 0.86 1.28 0.67 0.90 1.07 1.06 0.97 0.96 1.02 0.91 1.14 1.11
I 1.19 1.73 0.65 0.52 1.02 1.06 0.95 1.14 1.20 1.12 0.72 0.78
K 1.05 0.93 1.25 0.82 1.19 1.08 0.70 0.70 1.15 0.99 1.04 0.79
L 1.38 1.16 0.94 0.76 0.79 1.05 1.21 1.05 1.13 1.13 0.67 0.63
M 1.06 1.13 0.85 0.86 1.12 0.94 1.00 0.90 1.18 1.00 0.90 0.84
N 0.58 0.66 0.98 1.87 0.96 1.12 0.90 0.96 0.86 0.98 1.23 1.10
P 3.21 0.97 1.19 0.75 1.11 0.90 1.24 0.92 1.28 1.23 - -
Q 1.05 1.09 0.97 0.80 1.19 0.98 0.90 0.73 1.05 0.98 1.03 0.96
R 0.96 1.19 0.90 0.77 1.11 0.96 0.93 0.94 1.14 0.94 1.15 0.84
S 0.90 0.97 1.39 1.18 0.92 1.00 1.07 1.06 0.96 1.04 1.04 1.11
T 0.77 1.07 1.09 2.01 1.00 1.05 0.91 1.00 1.13 0.99 0.91 1.03
V 1.10 1.74 0.54 0.55 1.11 1.09 0.88 1.01 1.25 1.03 0.80 0.73
W 1.06 0.96 1.36 1.17 0.64 1.15 1.34 1.29 0.84 1.16 0.98 1.02
Y 1.03 1.32 0.68 0.79 0.75 1.28 1.03 0.99 0.80 1.12 1.13 0.96

a Fractional change in populations of four regions in //w space: PPII, b, aR, and type I b-turn (b-I), defined in the legend to
Fig. 1. For each residue, the ratio between the population of subset {Xi} is compared to the average population of that
region in the coil library (excluding residues preceding Pro). Jackknife uncertainties are given in Supporting Information
Table S3.
b Same as above, but comparing residues preceded by Z to the average coil population of that region. Gly, Pro and residues
preceding Pro are excluded from the reference set.
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is commonly done, we have scaled the Hellinger dis-

tances up by a factor of 100.

For evaluating the effect of a residue of type Z

in position i – 1 on the //w propensities of X in posi-

tion i, residues preceded by Z, fZ2Xg, are compared

to the full set fXg. Similarly, for the effect of Z in

position i 1 1, fX2Zg is compared to fXg. For all

these comparisons, Gly and Pro are excluded when

calculating the average for residue set X because

their //w distributions deviate strongly from other

residue types. Comparison of the //w torsion angle

distribution of fZ2Xg and fXg, viewed as the ratio

of their respective densities in the Ramachandran

map, is used for an initial evaluation of the effect of

the preceding residue (Supporting Information Fig.

S3), and similarly comparison of fX2Zg and fXg for

Figure 2. Effects on the backbone conformational distribution from (A,D) the residue itself, (B,E) preceding, and (C,F) following

residue. Populations of four regions with characteristic backbone torsion angles are evaluated: PPII, b, aR, and type I b-turn (b-

I) [marked in Fig. 1(A)]. (A) For each residue type Xi in the coil library, its impact on the backbone //w conformational distribu-

tion is evaluated by using the ratio of the normalized residue density (black bars) between subsets fXig and all data {X} in the

coil library. (B-C) For each residue type Z, the ratio of the normalized residue density d, d(/,w)/Rd(/,w), between subsets fZ2X

g (or fX2Zg) and all data in the coil library fX2Xg are firstly calculated for its neighbor residue X . The weighted averaged ratio

<dfZ2Xg/dfX2Xg> and <dfX2Zg/dfX2Xg> is then calculated and plotted (black bars) for each of the four //w regions,

visualizing the impact of the preceding (B) and following residue (C) on the //w region populated by the center residue. The cal-

culation is performed for five randomly selected two-half subset of the random coil library, the average pairwise RMS deviation

observed among these 10 sets of calculated density ratios is calculated and plotted (as error bars). Xaa-Pro, Gly and Pro are

excluded from the center residue set X. (D-F) Multi-dimensional scaling plots of average Hellinger distances between (D) any

two center residues, (E) any pair of preceding, or (F) any pair of following residues. Hellinger distance maps (upscaled by a fac-

tor of 100) were derived as described by Ting et al.19 The radius of each bubble in the 2D map corresponds to half the posi-

tional uncertainty, as derived from jackknife analysis. Locations of Pro (at x,y 5 234, 5) falls outside the box shown in (F), and

Gly (at x,y 5 252, 6) and Pro (at x,y 5 22, 245) fall outside the box shown in (D). Clustering of the 20 residue types in the Hel-

linger maps is used to aid grouping of residues in (A-C). Full sets of pairwise Hellinger distances are given in Supporting Infor-

mation Table S7
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the effect of the residue following X (Supporting

Information Fig. S4). Such analyses assume that the

effects of both preceding and following residues on

the backbone torsion angles of the center residue

are independent of the center residue type. Although

we will show that this assumption accounts to first

order for the effect of neighbors, the interaction

between nearest neighbors also plays a role.

The effect of neighbor residue type on the Ram-

achandran distributions (Supporting Information

Figs. S3 and S4) can be summarized by the frac-

tional population change they cause for the four

most populated Ramachandran map regions, b,

PPII, aR and b-I. It is seen, for example, that an aro-

matic residue in the i-1 position increases the b pro-

pensity of residue i, at the expense of PPII [Fig.

2(B), Table I, Supporting Information Table S2]. Ala,

Ser, Thr, Ile, Asn, and Pro have only small effects on

the backbone //w distribution of the following resi-

due, while those from Phe, Trp, Tyr, Gly, Asp, Glu,

and Lys are relative large. Although the statistical

uncertainty in these fractional changes is substan-

tial for less common residues such as Trp and Cys,

for the majority of residues the average effect is well

determined with an uncertainty of less than ca 3%

for the b and PPII regions, but slightly higher for

the less populated aR and b-I regions (Supporting

Information Table S3). Based on the data shown in

Figure 2(B) and the corresponding Hellinger map

[Fig. 2(E)], the left neighbor effects of the 20 residue

types can be consolidated into six groups of residues

with similar impact on their neighbor: {EKQ} (L1),

which increases PPPII and Pb of the following residue

while decreasing PaR and Pb-I, {AHMPRT} (L2),

{GDNS} (L3), {LFWY} (L4), which tend to reduce

PPPII and increase Pb, {IV} (L5), {C} (L6). Consolidat-

ing different residue types into a single, similarly

behaving group is desirable because it provides some

insight into which chemical property of a residue is

responsible for modulating the torsion angles of its

neighbor. For example, the similar effects imposed

by the L3 group suggest that it is the polarity of this

residue, and the short (or absent) sidechain; and the

observation that L5 contains both Ile and Val, but

not Thr, indicates that not only the Cb-branched

nature of the sidechain but also its polarity is a con-

tributing factor.

When evaluating the effect of the i 1 1 residue

type on the backbone torsion angles of i [Fig. 2(C),

Table I], one finds again that the presence of an aro-

matic residue decreases PPII propensity of i while

increasing b, but to a lesser extent than is seen

when the aromatic residue is located in the i – 1

position. Ile, Val and Leu in position i 1 1 increase

the PPII population of i by about 20%, at the

expense of a decrease in aR, whereas the highly

polar Asp and Asn residues have the opposite effect.

Thr, Met, Arg, Lys, Ala, and Gln in the i 1 1 position

have relatively small effects, while larger effects are

observed for Gly [Fig. 2(C), Supporting Information

Fig. S4, Table I, Supporting Information Tables S2

and S3]. Due to the pronounced effect of Pro on the

backbone conformation of its preceding residue and

its relatively large population in the coil library, we

opted to exclude it from the “control” subsets, fXg.
The effect of the following residue Z on the backbone

conformation of X is consolidated into five groups:

{ILV} (R1), which increases PPPII/Pb (�10–20%)

while lowering PaR/Pb–I (�20–40%); {ACKMQRT}

(R2), which has the smallest overall impact; {FWY}

(R3), which decreases PPPII (by �20%) and increases

Pb and PaR (�10–20%); {DEGHNS} (R4), which mod-

estly lowers PPPII and raises PaR and Pb–I; and {P}

(R5) which effectively removes population of aR and

b-I.

Considering the effects of residue type in posi-

tions i – 1, i, and i 1 1 on the //w angles of i inde-

pendently, as done above, ignores the impact of

interactions between specific types of residues.

Indeed, it is plausible that it is the interaction

between residues i – 1, i, and i 1 1 that modulate

the torsion angle propensity of residue i. For exam-

ple, like charges in the i – 1 and i 1 1 residues have

been proposed to promote extended backbone angles

for i, whereas opposite charges would promote turn

formation.15 However, analysis of our library sug-

gests that such electrostatic effects are essentially

undetectable (Supporting Information Table S4).

Nevertheless, as discussed below, our data confirm

that the effect of nearest neighbors on the backbone

angles of the center residue of a coil triplet depends

on the type of the center residue.

Effect of inter-residue interactions on

Ramachandran distribution

If the effect of residue types of the left, center, and

right residue of a triplet on the torsion angles of the

center residue are assumed to be independent of one

another, the fractional probability factors of Table I

(left neighbor and right neighbor) and Supporting

Information Table S2 (center residue) could simply

be multiplied to calculate the likelihood that the cen-

ter residue of a given triplet falls in any of the

selected regions. For example, the probability for the

//w angles of Ala in a Gln-Ala-Val fragment to locate

in the PPII region to a first approximation then is

given by 1.19 3 0.31 3 1.25. The correctness of such

predictions was evaluated as described below, using

an additional 17,600 coil residues (validation library)

taken from more recent PDB depositions, not used

for deriving the probabilities of Table I.

First, for all residues X in the validation library,

the 6-state //w distribution P(X,r) is generated from

the observed 6-state //w distribution probability in

the training coil library, ignoring neighboring resi-

due type. Thus, P(X,r) 5 N(X,r)/N(X), where N(X,r) is
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the number of type X residues residing in region r,

and N(X) is the total number of X residues, with

r 5 PPII, b, aR, b-I, aL and other. The average scalar

product between the predicted P(X,r) and the

observed P(X,r)obs for a given region r in the valida-

tion coil library is then calculated as

R{P(X,r)3P(X,r)obs/<P(r)>}/N(X,r)obs, where the sum-

mation extends over all residues of type X in the val-

idation library, with numbers larger than one

indicative of an improved prediction relative to sim-

ply using the fractional library population of r to

make the prediction. <P(r)> is the average P(X,r)

value for region r over all residues in the validation

library, N(X,r)obs is the number of X residues resid-

ing in region r in the validation library, and P(X,r)obs

is coded as a Boolean number to indicate if the resi-

due resides in r.

Only taking the type of the center residue into

account already significantly improves the prediction

(top row in Table II). Additionally taking into

account the residue type of the left neighbor, or right

neighbor, further improves the prediction (rows 2

and 3 in Table II). Taking the effect of center resi-

due, as well as left and right neighbor into account,

but assuming these effects are independent of one

another, further improves the prediction outcome

(row 4). However, when simultaneously taking into

account the center residue type as well as that of

the left and right neighbor, i.e. using only tripepti-

des of the same L-X-R composition in the training

library to make the prediction, accuracy decreases

(row 5). This effect results from the increased statis-

tical uncertainty in P(L-X-R,r), as for many residue

types there are insufficient numbers of L-X-R tripep-

tides in the training library. This statistical defi-

ciency can be mitigated somewhat by using the

above grouping of left and right neighbor residue

types (row 6), but remains slightly below what can

be achieved when treating these effects indepen-

dently. As expected, the best prediction accuracy is

obtained when using the output of the trained ANN

algorithm (row 7).

Calculation of 3JHN-Ha coupling constants from

database analysis
As in prior studies,12,15,34 we also used the / distri-

butions from the coil library to predict coil 3JHN-Ha

values using a Karplus relationship:

h3JðXÞi5
Xi5X

i�coil

A3cos 2 /i260ð Þ1B3cos /i260ð Þ1C
� �

=NX

(2)

where X is the residue type, NX is the number of

residues of type X observed in our coil library, and

Karplus coefficients are A 5 7.97 Hz, B 5 21.26 Hz,

and C 5 0.63 Hz, respectively.47

Using eq (2), the average 3JHN-Ha for different

residue types in our coil library (Table III, Support-

ing Information Table S5) are, on average, some-

what higher than those by Smith et al.34 and

Serrano,12 which in part results from the use of

more recent Karplus parameters for coupling con-

stant calculation. On the other hand, our average
3JHN-Ha are slightly lower compared to those mea-

sured for a series of Ac-GGXGG-NH2 peptides,33 a

difference caused by the increased population of

more negative / angles (i.e., larger 3JHN-Ha) for resi-

dues neighbored by Gly residues in these peptides

[Fig. 1(B)].

Table II. Relative Accuracies of Backbone Conformational Distribution Predicted from Sequencea

All PPII b aR b-I aL other

P(X,r)b 1.15 1.06 1.10 1.11 1.33 2.82 1.12
P(L-X,r)c 1.19 1.08 1.12 1.17 1.43 3.25 1.13
P(X-R,r)d 1.21 1.09 1.13 1.21 1.48 3.34 1.13
P(L-X,r)3P(X-R,r)/P(X,r)e 1.25 1.12 1.15 1.27 1.59 3.91 1.14
P(L-X-R,r)f 1.19 1.10 1.13 1.16 1.44 2.87 1.12
P({L}-X-{R},r)g 1.22 1.11 1.14 1.20 1.51 3.57 1.13
PANN(L-X-R,r)h 1.28 1.11 1.15 1.30 1.70 4.59 1.13

a Accuracy of the prediction P for residue X to be located in region r of the Ramachandran map, with r 5 PPII, b, aR, type I
b-turn (b-I), aR and other. The reported value is relative to the probability that any residue, regardless of type or neigh-
bors, is found in that region.
b P(X,r) is the predicted probability of X being located in r when taking the residue type of X into account, compared to the
fractional population of r, regardless of residue type.
c P(L-X,r) prediction based on left and center residue.
d P(X-R,r) prediction based on center and right neighbor residue.
e Prediction accuracy when effect of left, center and right residue are considered independently. Note that the denominator
term, P(X,r), is needed for normalization.
f P(L-X-R,r) prediction based on fractional occurrence of L-X-R tripeptides in region r of the training library.
g P({L}-X-{R},r) prediction based on fractional occurrence of {L}-X-{R} tripeptides in region r of the training library, using
grouping of left and right neighbor residues.
h PANN(L-X-R,r) prediction based on trained artificial neural network.
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Nearest-neighbors effects on 3JHN-Ha coupling

constants

As discussed above, the Ramachandran map distribu-

tion of a coil residue depends both on its own residue

type and that of its neighbors [Fig. 1(B–D), Support-

ing Information Figs. S2–S5], giving rise to sequence-

dependent variations of 3JHN-Ha. Accounting for the

nearest-neighbors effects therefore is expected to

yield a more accurate prediction of 3JHN-Ha for disor-

dered residues. For a residue X preceded by U and fol-

lowed by Z, a secondary scalar coupling constant term

d3J can then be introduced to account for the devia-

tion caused by the neighbors to the “random coil”
3JHN-Ha value of X:

d3JðXjU2X2ZÞ53JðU2X2ZÞ2h3JðXÞi (3)

where 3JðU2X2ZÞ is the calculated 3JHN-Ha cou-

pling constant for X in the tri-peptide U-X-Z and

h3JðXÞi is the average calculated value without tak-

ing neighbors into account. Originally we had antici-

pated that the effect of the neighbors on the 3JHN-Ha

coupling would depend on the type of the center res-

idue, with potential synergy between the left and

right neighbors making their effects nonadditive.15

However, after exhaustive searching, including the

grouping of residues and residue pairs that are clos-

est in their Ramachandran map distribution as eval-

uated by their Hellinger distance, we were unable to

find any statistically meaningful improvement over

simply considering the effects of left and right neigh-

bor on 3JHN–Ha of the center residue independently

of one another, and independent of the center resi-

due type. Therefore, the neighbor effects can simply

be summarized by small positive or negative adjust-

ment to h3JðXÞi of the center residue (Table III).

The largest neighbor effects are seen for an aromatic

residue in the i – 1 or i 1 1 position, increasing h3Jð
XÞi by nearly 0.5 Hz, whereas smaller effects in the

opposite direction are observed for residues with Cg

methylene groups (Lys, Arg, Glu, Gln, Met).

3JHN-Ha coupling constants from ANN prediction

As discussed above, we were unable to identify non-

linear interactions when searching for the effect of

sequence of a tripeptide on the 3JHN-Ha of its center

residue, meaning that the contributions of preceding

and following residue to 3JHN-Ha simply were addi-

tive. Although this outcome was perhaps not sur-

prising, considering that the effect of sequence on

secondary structure propensity also showed at most

limited nonlinear contributions, it was conceivable

that we could have missed a given specific type of

interaction between the preceding and following res-

idues that could impact 3JHN-Ha of the center resi-

due. We therefore also employed a more advanced

method to predict 3JHN-Ha for the center residue of a

given tripeptide sequence, using again the ANN

algorithm.

As demonstrated above, the ANN is very robust

for predicting the probability, PANN
i , for a center resi-

due X of a given tripeptide U-X-Z to reside in each

of the six //w regions of Ramachandran space. As

these probabilities are strongly correlated to the

respective / angle distribution, the correction term

to 3JHN-Ha can be written as a linear sum over these

probabilities:

3JðXjU2X2ZÞ5
X

i

ci3PANN
i ðU2X2ZÞ1AX (4)

where ci is the weight given to each //w region i

(i 5 PPII, b, aR, b-I, aL and other), and AX

(X 6¼Gly&Pro) is a residue-specific, average coupling

constant. Using Eq. (4) requires optimization of 24

parameters (18 AX values and 6 ci coefficients), a lin-

ear problem most easily solved by singular value

decomposition (SVD). With 332 experimental
3JHN-Ha values available (Table IV), this suffices to

determine these parameters.

To prevent over-fitting, and to exclude residue

types for which less than 10 experimental values

Table III. Average 3JHN-Ha Couplings and Nearest-
Neighbor Corrections

X
<3J(X)>a

[Hz]
<d3J(X-)>b

[Hz]
<d3J(-X)>c

[Hz]
<3J(X)>ANN

d

[Hz]

A 5.81 20.07 0.00 5.83
C 7.02 0.17 0.01 7.15
D 6.89 0.02 0.04 6.98
E 6.55 20.15 20.10 6.57
F 7.23 0.50 0.34 7.11
G - 0.04 0.18
H 7.24 20.01 0.00 7.34
I 7.60 0.17 0.03 7.26
K 6.70 20.14 20.24 6.71
L 6.86 0.25 0.05 6.89
M 6.88 20.03 20.22 6.94
N 7.33 20.03 20.04 7.32
P - 20.22 0.02
Q 6.99 20.24 20.15 6.73
R 6.96 20.09 20.23 6.66
S 6.83 20.05 20.03 6.40
T 7.59 0.01 20.10 7.22
V 7.73 0.06 20.08 7.16
W 6.81 0.41 0.38 6.44
Y 7.17 0.44 0.30 6.74

a Average 3JHN-Ha couplings calculated from Eq (2) over all
residues of type X in the coil library.
b Average correction from the preceding residue to 3JHN-Ha

couplings (Eq. (3)) for all residues in the coil library which
have a preceding residue of type X.
c Average correction from the following residue to 3JHN-Ha

couplings (Eq. (3)) for all residues in the coil library which
have a following residue of type X.
d Calculated average 3JHN-Ha coupling constant AX in Eq
(4). Coefficients used for Eq. (4) are cPPII 5 21.13, cb 5 1.28,
caR 5 20.16, cb-I 5 0.92, caL 5 20.97, and cother 5 0.07.
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were available, a similar three-fold jackknifing pro-

cedure as used above for training the ANN algo-

rithm was employed: the subset of 306 (out of 332)

experimental 3JHN-Ha data, with�10 experimental
3JHN-Ha for each residue type (excl. Cys, Trp, His,

Met, and Phe), was split into three even subsets of

102 residues each, followed by three separate SVD

fittings. For each of these three SVD fits, one of the

subsets was excluded from the input data but then

used to evaluate the fitting performance on the

other two subsets plus the remaining set of 26

sparse residues. This procedure was repeated three

times, each time with a different one-third of the

experimental 3JHN-Ha dataset assigned to the valida-

tion set. With this procedure, the RMSD to the cal-

culated 3JHN-Ha coupling constants [Eq. (4)] was

0.34 and 0.36 Hz for the fitting and validation data-

sets (Table IV) [Fig. 3(B)], with the average weights

and AX values listed in Table III.

Comparison of predicted and experimentally

observed 3JHN-Ha

For disordered proteins, the rapid, large amplitude

chain dynamics yields narrow 1H NMR line widths,

and consequently 3JHN-Ha couplings can be mea-

sured at very high precision simply by recording 2D

TROSY-HSQC spectra, with some minor adaptations

to the pulse sequence to minimize phase distor-

tions.51 These measurements were previously dem-

onstrated for a-synuclein, an intrinsically disordered

protein of 140 residues,49 and the Ab1–40 and Ab1–42

peptides.51,52 High precision values for ubiquitin,

Table IV. Accuracy of Predicting Coil 3JHN-Ha Values for Disordered Peptides and Proteins

Protein Na

RMS deviationsb [Hz]

<3J> 3Jna
3JANN <(3Jna13JANN)/2> 3JSearle

Ab(1–40) 30 0.45 0.38 0.37 0.37 0.42
a-synuclein 111 0.39 0.29 0.29 0.29 0.50
Protease 64 0.44 0.38 0.42 0.38 0.43
Integrase-N 44 0.47 0.41 0.36 0.37 0.58
Ubiquitinc 65 0.45 0.41 0.38 0.38 0.42
GGXGGd 18 0.43 0.43 0.28 0.31 0.37
All 332 0.43 0.37 0.36 0.35 0.47

a Number of experimental 3JHN-Ha couplings for each test set; for N-terminally acetylated a-synuclein, the first six residues
have partial helical character and were excluded; temperature correction48 was applied to experimental data if not mea-
sured at 208C, including a 10.16 Hz correction for Ab (measured at 48C) and a 20.10 Hz correction for denatured ubiquitin
data (measured at 308C); pressure correction of 10.08 Hz/kbar49 is applied to the experimental data not acquired at 1 bar,
including a 10.20 Hz correction for both pressure-denatured HIV-1 Protease and the N-terminal DNA-binding domain of
HIV-1 Integrase (both collected at 2500 bar).
b RMSD between experimental and predicted 3JHN-Ha coupling constants; <3J> is the difference relative to the average
3JHN–Ha value calculated using Eq. (2) for residues of type X in the newly generated coil library, 3Jna is calculated relative
to <3J> plus the neighbor adjustments of Table III; 3JANN is the RMSD relative to values predicted by the ANN-based Eq.
(4). 3JANN values for each of the 8000 triplets are also available at https://spin.niddk.nih.gov/bax/nmrserver/rc_3Jhnha/
ann_results.txt; 3JSearle is the RMSD relative to the neighbor-corrected coil values of Searle and co-workers.15

c From Peti et al.50

d From Shi and Kallenbach.33

Figure 3. Correlation plot between predicted 3JHN-Ha couplings for six sets of experimental values obtained for disordered pep-

tides and proteins (Table IV). (A) Predicted using the newly derived nearest-neighbors effects (Eq. 3). (B) Predicted using the

ANN algorithm. (C) Predicted using the nearest-neighbor-specific values of Searle and co-workers.15 RMSD values for the three

plots are 0.37, 0.36, and 0.47 Hz, respectively. Some outlying residues are labeled by their one-letter code and residue number,

preceded by a letter designating the protein (I: HIV-1 integrase; P: HIV-1 protease; U: ubiquitin)
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denatured in 8M urea at pH 2.0, have been reported

by Peti et al.50 Additionally, we have used the 2D

TROSY-HSQC method to measure high precision

values for two pressure-denatured proteins: HIV-1

protease and the C-terminal DNA-binding domain of

HIV-1 integrase (Supporting Information Table S8).

These data were collected at 2.5 kbar, and were

adjusted to 1 bar by using the known, rather uni-

form pressure dependence of 20.08 Hz/kbar mea-

sured previously for a-synuclein.49 Additionally, we

used the high precision set of 3JHN-Ha couplings

reported by Kallenbach and co-workers for a series

of G-G-X-G-G peptides.33 These systems yielded a

total set of 332 high-precision experimental 3JHN-Ha

coupling constants for highly disordered residues.

When ignoring the effect of neighboring resi-

dues, the RMSD between observed and predicted
3JHN-Ha values equals 0.43 Hz, but simply adding

the neighbor adjustment terms of Table III

decreases this RMSD to 0.37 Hz [Fig. 3(A); Table

IV]. Essentially the same level of agreement [Fig.

3(B); Table IV] is obtained by using the above

described ANN method to predict 3JHN-Ha (Table IV).

This result confirms that indeed the prediction

method is not limiting the accuracy at which ran-

dom coil 3JHN-Ha values can be predicted. With both

the linear and ANN prediction methods being some-

what independent of one another, the output error

can be reduced slightly by averaging their predic-

tions, decreasing the RMSD from experimental val-

ues to 0.35 Hz (Table IV).

Concluding remarks

Identifying the perfect “random coil” distribution

remains a serious challenge. Most solutions pro-

posed to date, including ours, simply identify seg-

ments in crystal structures that lack commonly

observed elements of secondary structure. Our

exclusion criteria are strictly based on the absence

of H-bonding to nonimmediate neighbors, as these

could bias the distribution of backbone torsion

angles. Although our H-bond criteria are perhaps

overly restrictive, the increased size of today’s pro-

tein databank yields a sufficiently large set of coil

residues for statistical analysis. Averaged chemical

shift predictions for the residues in our coil library

agree very well with empirically derived random coil

values.

Predictions for random coil values of 3JHN-Ha

derived from our new coil library also show

improved agreement with experimental values, but

by a modest fraction of ca 25% relative to the best

prior method for predicting these values, proposed

by Searle and co-workers,15 However, if their

method is applied using our new coil library as

input, that prediction method also improves, albeit

by only ca 12%. Therefore, it appears that about

half the improvement may be attributed to the more

stringent H-bond criteria used for identifying coil

regions in crystal structures, whereas the other half

results from how the effect of neighboring residues

is accounted for. Although Griffiths-Jones et al.15

postulated electrostatic interactions between resi-

dues i – 1 and i 1 1 to significantly affect the torsion

angles of i, we were unable to confirm such effects.

Instead, we find that only interactions between

immediate neighbors are sufficiently large to permit

statistical analysis.

Even after extensive efforts to improve the pre-

diction accuracy for 3JHN-Ha of coil residues, our

results reach a lower limit of ca 0.35 Hz for the

residual RMSD between predicted values and exper-

imentally measured ones for a range of disordered

peptide and protein systems. Considering that the

experimental uncertainty is well below 0.35 Hz, the

residual discrepancy likely results from effects that

perturb the coil backbone torsion angles originating

from nonimmediate neighbors. Indeed, the largest

outliers in our experimental validation analysis

were observed for residues that appeared to have

some degree of residual order, as judged by RCI-S2

�0.6, where RCI-S2 is an empirically derived,

chemical-shift-based “order parameter,” which

ranges from 0 when backbone chemical shifts are at

random coil values, to 1 when they strongly differ.53

When excluding the ca 20 residues in our experi-

mental data set for which RCI-S2� 0.6, the RMSD

between observed and predicted 3JHN-Ha decreases

to 0.30 Hz. It is likely that variations of this magni-

tude must be attributed to residual interactions in

disordered systems with residues other than imme-

diate neighbors. In this respect, it is interesting to

note substantial variations in our set of experimen-

tally measured values for triplets of residues that

have multiple occurrences (Supporting Information

Table S6). For example, for the four occurrences of

the tri-peptide Lys-Glu-Gly, a 0.43 Hz RMSD from

average was observed, and comparable differences

for other tripeptides with multiple occurrences are

seen.

Analysis of coil regions in crystal structures

using the stringent H-bond cut-off criteria used in

our study appears to yield a library of fragments

that agrees very well with empirically determined

random coil chemical shifts and 3JHN-Ha couplings.

However, the difference between individual chemical

shifts and 3JHN-Ha values predicted for a given

sequence and experimentally measured ones often

exceeds both measurement error and the uncer-

tainty in the prediction. This result suggests that

even in highly disordered polypeptides, interactions

with residues outside of the triplet of residues con-

sidered often impacts backbone torsion angles to a

degree that is reflected in the observed NMR

parameters.
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Software availability

The program, together with the coil library used in

this work, is available at http://spin.niddk.nih.gov/

bax/nmrserver/rc_3Jhnha as a webserver.
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